ОВ=ОС=R, ОА - общая, АВ=АС (по определению - отрезки касательных, проведенных из одной точки, равны) => эти треугольники равны по 3-му признаку=> уголВОА=угол ОСА.
Рассм. треуг. АОВ: т.к. ОВ в 2 раза меньше АО, то угол ОАВ=30 градусов(сторона, лежащая напротив угла в 30 градусов, равна половине гипотенузы). угол ВОА=180-90-30=60 градусов.
если диагонали трапеции перпендикулярны, то площадь трапеции равна их полупроизведению (это легко показать, если рассмотреть два треугольника, образованных диагональю - тогда кусочки второй диагонали будут высотами этих треугольников). но площадь трапеции равна произведению высоты на среднюю линию. т.е. если мы найдем вторую диагональ и высоту, то мы получим и среднюю линию.
находим высоту: проведем высоту так, чтобы образовался треугольник с известной диагональю (очевидно, что она образует угол 60 с основанием) трапеции в роли гипотенузы. далее, в зависимости от того, что уже учили, можно или умножить ее на синус 60 или найти второй катет, как половину гипотенузы (катет напротив 30 градусов), а дальше воспользоваться теоремой пифагора. в любом случае выйдет 6sqrt3 (sqrt - квадратный корень). теперь проведем еще одну высоту так, чтобы образовался треугольник со второй диагональю в роли гипотенузы. тогда эта диагональ будет равна 12sqrt3 (угол то 30, поэтому в два раза длиннее катета) ну и запишем то, что было сказано о площадях: 12*12sqrt3/2=x6sqrt3 (где х - средняя линия) откуда и получаем, что х=12
Дано: АВ и АС - касательные, ОА=30 см, ОВ=15 см.
Найти: угол ВОС.
Рассмотрим треуг-ки АОВ и АОС:
ОВ=ОС=R, ОА - общая, АВ=АС (по определению - отрезки касательных, проведенных из одной точки, равны) => эти треугольники равны по 3-му признаку=> уголВОА=угол ОСА.
Рассм. треуг. АОВ: т.к. ОВ в 2 раза меньше АО, то угол ОАВ=30 градусов(сторона, лежащая напротив угла в 30 градусов, равна половине гипотенузы). угол ВОА=180-90-30=60 градусов.
угол ВОС= угол ВОА+ угол ОСА= 60+60=120 градусов.
ответ: 120 градусов.