Медиана делит основание треугольника на две равные части,поэтому треугольники АВК и ВКС равны между собой по третьему признаку равенства треугольников-если три стороны одного треугольника равны трём сторонам другого треугольника,то эти треугольники равны между собой
АВ=ВС,как стороны равнобедреного треугольника
АК=КС ,сторону АС медиана поделила на две равных стороны
И ВК-общая сторона
Периметр АВС
АВ+ВС+АК+КС=36 см
Периметры двух треугольников АВК и ВКС равны
АВ+ВС+АК+КС+(ВК)+(ВК)+30+30=60 см
(60-36);2=24:2=12 см
Объяснение:
Пусть задан отрезок АВ и угол с вершиной М.
С циркуля и линейки нужно разделить отрезок АВ пополам: из А и В как из центра провести полуокружности радиусом больше половины отрезка. Точки их пересечения по обе стороны отрезка соединить прямой. Эта прямая делит отрезок на два равных АО=ВО.
Из вершины М данного угла, как из центра, циркулем проводим окружность радиусом, равным ОВ - половине заданного отрезка.
Она пересечет стороны угла в точках С и К на равном расстоянии от вершины М. Это расстояние равно половине отрезка АВ.
МС=МК=ОВ. Построение закончено.
Объяснение:
ггррертп5&-+544"