a) K, L, M ∈ α; α║(SBC)
KL║BS; KM║BC; ML║CS как линии пересечения двух параллельных плоскостей с одной общей.
SH⊥(ABC); AT⊥BC; H∈AT как центр правильного треугольника лежащий на медиане. AH:HT=2:1 по свойству пересечения медиан.
LU⊥KM ⇒ KU=UM ⇒ U∈AT ⇒ LU⊂(AST) ⇒ LU∩SH
Рассмотрим плоскость AST.
LU║ST как линии пересечения двух параллельных плоскостей с (AST).
AK:KB=AL:LS=5:1 по теореме о пропорциональных отрезках.
AU:UT=AL:LS по теореме о пропорциональных отрезках.
Как уже известно AH:HT=2:1. Пусть AU=5x; UT=x ⇒AT=6x ⇒ AH=4x; HT=2x ⇒ HU=2x-x=x.
ΔSHT~ΔRHU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит SH:RH=HT:HU=2:1. Пусть SH=2y; RH=y ⇒ SR=2y-y=y ⇒ SR=y=RH
То есть плоскость делит высоту пополам.
б) AT=AB*sin 60°=(15+3)*√3/2=9√3.
ΔAST~ΔALU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит AL:AS=LU:ST=6:5.
HT=1/3 *9√3=3√3 т.к. AH:HT=2:1
SH=13 ⇒ ST=√(169+27)=14 ⇒ LU=5/6 *14=35/3.
ΔAKM~ΔABC по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).
Значит KM:BC=AK:AB=5:6 ⇒ KM=5/6 *18=15.
Как было указано в начале LU⊥KM ⇒ S=1/2* 15*35/3=175/2=87,5
ответ: 87,5.
Объяснение:
Теоремы с чертежами даны в первом рисунке
1)
a)56+32=/=180°; не параллельны
б)72=72; параллельны по накрест лежащим углам
в)113+67=180°; параллельны по сумме односторонних углов
г)153+35=/=180°; не параллельны
а)73+73=/=180°; не параллельны
б)25=/=63; не параллельны
в)58+22=/=180°; не параллельны
г)143=143; параллельны по накрест лежащим углам
2)
а) a║b
∠6=∠3=108°; ∠5=180-108=72°; ∠5=∠4=72°;
∠1=∠3=108°; ∠4=∠2=72°; ∠6=∠8=108°; ∠5=∠7=72°
б)m║d
∠4=∠6=63°; ∠3=180-63=117°; ∠3=∠5=117°; ∠7=∠5=117°; ∠6=∠8=63°; ∠2=∠3=117°; ∠1=∠4=63°
3) Решения даны на втором и третьем из прикреплённых рисунков