Теорема.
Если любую сторону треугольника продолжить в одном направлении, то образовавшийся при этом внешний угол больше каждого внутреннего угла, не смежного с ним.
Следствие из теоремы.
Если в треугольнике один из углов прямой или тупой, то два других угла будут острые.
Теорема. В любом треугольнике:
1. Напротив равных сторон расположены одинаковые углы.
2. Напротив большей стороны расположен больший угол.
Следствия из теоремы.
1. В равностороннем треугольнике все углы одинаковы.
2. В разностороннем треугольнике одинаковых углов нет.
Обратные теоремы. В каждом треугольнике:
1. Напротив одинаковых углов расположены одинаковые стороны.
2. Напротив большего угла расположена большая сторона.
Следствия
1. Равноугольный треугольник является и равносторонним.
2. В треугольнике сторона, расположенная напротив тупого или прямого угла, больше других сторон.
из дано следует, что АО=СО=ВО=DО (1)
рассмотрим треугольник АОС, он - равнобедренный ( это следует из 1)
треугольник ДОВ, так же равнобедренный ( из 1)
между пересечениями этих линий у нас образовались равные углы: угол АОС= углу ДОВ ( они вертикальные) (2), и также угол СОД=углу СОВ (они тоже вертикальные) (3)
=> треугольник АОС = треугольнику ДОБ (по 1ому признаку: если две стороны одного треугольника и угол между ними равны двум сторонам и углу между ними соответственно, то такие треугольники равны) следовательно АС=ВД, треугольник АОД=СОВ (по 1ому признаку)следовательно АД=СВ
в итоге имеем прямоугольник (четырехугольник у которого две стороны попарно равны - прямоугольник) следовательно Ас параллельно ДВ ( по признаку прямоугольника) что и требовалось доказать
удач