Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
1. Строите прямую a, параллельную данному отрезку [KN]. 2. Циркулем откладываем на этой прямой 3 равных отрезка так, чтобы они в сумме были длиннее, чем исходный отрезок. Получаем точки B, C, D, E, причем [BC]=[CD]=[DE], как радиусы окружностей, и [BE] > [KN] 3. Через начало первого отрезка и через конец последнего проводим 2 прямые, соединяющие эти точки с началом и концом данного отрезка. - Прямые (BK) и (EN) 4 Так как новый отрезок длиннее, чем данный, то эти прямые пересекутся в некоторой точке А. Таким образом, получится треугольник ABE с вершиной в точке А. Из этой точки строим 2 луча, пересекающие прямую а в точках C и D, которые мы отметили циркулем. Тогда на данном отрезке получатся 2 точки F и S, которые разобьют его на 3 равные части. То есть [KF]=[FS]=[SN]= 1/3[KN]
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: