Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
1) Уравнение плоскости, проходящей через точку перпендикулярно векторуДана точка и вектор . То есть и прямая и точка должны иметь соответствующие координаты. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору: . . Раскрыв скобки и приведя подобные, получаем уравнение плоскости общего вида Ax + By + Cz + D = 0. Для построения плоскости её уравнение общего вида надо преобразовать в уравнение в отрезках. Значения (-D/A) = a, (-D/B) = b, (-D/C) = это и есть отрезки на осях, через которые проходит плоскость.
это по формуле
(а-в)(а+в)=а^2-в^2