В трапецию можно вписать окружность в том случае, если суммы её противоположных сторон равны.
То есть AЕ + РC = ЕР + АC; В случае выполнения данного равенства окружность можно вписать в трапецию и радиус вписанной в трапецию окружности равен половине высоты трапеции.
Радиус вписанной в трапецию окружности вычисляется по формуле:
r = h / 2 = √(bc) / 2 ,
где h - высота трапеции, b,c - основания трапеции.
Обозначим ЕР как х.
Тогда (12 + х)*2 = 30, 12 + х = 15, х = 15 - 12 = 3 см.
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
В трапецию можно вписать окружность в том случае, если суммы её противоположных сторон равны.
То есть AЕ + РC = ЕР + АC;
В случае выполнения данного равенства окружность можно вписать в трапецию и радиус вписанной в трапецию окружности равен половине высоты трапеции.
Радиус вписанной в трапецию окружности вычисляется по формуле:
r = h / 2 = √(bc) / 2 ,
где h - высота трапеции,
b,c - основания трапеции.
Обозначим ЕР как х.
Тогда (12 + х)*2 = 30, 12 + х = 15, х = 15 - 12 = 3 см.
И получаем искомый радиус:
r = √(3*12) / 2 = √36 / 2 = 6 / 2 = 3 см.