пусть m – точка пересечения диагоналей ac и bd четырёхугольника abcd. применим неравенство треугольника к треугольникам abc, adc, bad и bcd: ac < ab + bc, ac < da + dc, bd < ab + ad, bd < cb + cd. сложив эти четыре неравенства, получим: 2(ac + bd) < 2(ab + bc + cd + ad).
запишем неравенства треугольника для треугольников amb, bmc, cmd и amd: am + mb > ab, bm + mc > bc, mc + md > cd, ma + md > ad. сложив эти неравенства, получим: 2(ac + bd) > ab + bc + cd + ad.
Если считать плотности одинаковыми, тогда арбузы отличаются только по объему, от коего и зависит масса. так. как объем - это кубическая (третьей степени) величина от радиуса(диаметра), то увеличение диаметра в 3 раза ведет увеличение объема в 3*3*3=27 раз. Соответственно и масса больше в 27 раз.
С точки зрения здравого смысла задача бессмысленна. Если спелый нормальный арбуз - масса хотя бы 3 кг, тогда другой 81 кг. Ого! А если другой - 27 кг (тоже ого!), тогда первый - всего 1 кг. Тогда он , вероятнее всего, зеленый, плотности разные, соответственно и диаметры отличаются не в 3 раза. Хотя составителям задачи что только не приснится в пьяном угаре
пусть m – точка пересечения диагоналей ac и bd четырёхугольника abcd. применим неравенство треугольника к треугольникам abc, adc, bad и bcd: ac < ab + bc, ac < da + dc, bd < ab + ad, bd < cb + cd. сложив эти четыре неравенства, получим: 2(ac + bd) < 2(ab + bc + cd + ad).
запишем неравенства треугольника для треугольников amb, bmc, cmd и amd: am + mb > ab, bm + mc > bc, mc + md > cd, ma + md > ad. сложив эти неравенства, получим: 2(ac + bd) > ab + bc + cd + ad.