Решите две эти задачи. Желательно писать со словами по усл,тогда и подобными. 1)один из углов параллелограмма на 12 градусов больше второго. найти эти углы. 2)один из углов параллелограмма на 26 градусов меньше второго. найти эти углы.
Так как прямые, разделяющие треугольник на равные по площади фигуры, параллельны стороне, то они делят его на 1 треугольник и 4 трапеции. Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника. Площадь правильного треугольника находят по формуле S=(a²√3):4 S=(100√3):4=25√3 Тогда площадь треугольника, периметр которого нужно найти, равна S:5= 5√3 Найдем его сторону из формулы площади правильного треугольника: 5√3=(a²√3):4 20=a² a=√20=2√5 см Р=3*2√5=6√5
Так как прямые, разделяющие треугольник на равные по площади фигуры, параллельны стороне, то они делят его на 1 треугольник и 4 трапеции. Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника. Площадь правильного треугольника находят по формуле S=(a²√3):4 S=(100√3):4=25√3 Тогда площадь треугольника, периметр которого нужно найти, равна S:5= 5√3 Найдем его сторону из формулы площади правильного треугольника: 5√3=(a²√3):4 20=a² a=√20=2√5 см Р=3*2√5=6√5
Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника.
Площадь правильного треугольника находят по формуле
S=(a²√3):4
S=(100√3):4=25√3
Тогда площадь треугольника, периметр которого нужно найти, равна
S:5= 5√3
Найдем его сторону из формулы площади правильного треугольника:
5√3=(a²√3):4
20=a²
a=√20=2√5 см
Р=3*2√5=6√5