1 ЗАДАЧА РИСУЕМ ПАРАЛЛЕРОГРАММ РИСУЕМ ПРЯМЫЕ АА1 И СС1 ПО УСЛОВИЮ ОНИ ПАРАЛЛЕЛЬНЫ СОЕДИНЯЕМ А1 И D С1 И В У НАС ПОЛУЧАЮТСЯ ТРЕУГОЛЬНИКИ НУЖНО ДОКАЗАТЬ ЧТО ИХ ПЛОСКОСТИ ПАРАЛЛЕЛЬНЫ ДЛЯ ТОГО ЧТОБЫ ЗАДАТЬ ПЛОСКОСТЬ НАМ НЕОБХОДИМО 3 ТОЧКИ ЭТО БУДУТ ВЕРШИНЫ НАШИХ ТРЕУГОЛЬНИКОВ ПОСКОЛЬКУ ПРЯМЫЕ АА1 И СС1 ПАРАЛЛЕЛЬНЫ И ВС И AD ТОЖЕ ПАРАЛЛЕЛЬНЫ(ТАК КАК ФИГУРА ПАРАЛЛЕРОГРАМ ПО ЕГО СВОИСТВУ)
ЕСЛИ ДВЕ ПРЯМЫЕ ОДНОЙ ПЛОСКОСТИ ПАРАЛЛЕЛЬНЫ ТО ЭТИ ПЛОСКОСТИ ПАРАЛЛЕЛЬНЫ.
2 ЗАДАЧА РИСУЕМ ДВА ПАРАЛЛЕРОГРАММА РАЗ ОНИ НЕ ЛЕЖАТ В ОДНОЙ ПЛОСКОСТИ ЗНАЧИТ НЕ ПЕРЕСЕКАЮТСЯ ЗНАЧИТ ПАРАЛЛЕЛЬНЫ ЕСЛИ СОЕДЕНИТЬ ВСЕ ВЕРШИНЫ АА1 ВВ1 СС DD1 ТО У НАС ПОЛУЧИТЬСЯ ПАРАЛЛЕЛЕПИПЕД ПРОТИВОПОЛОЖЕННЫЕ ГРАНИ ПАРАЛЕЛЕПИПЕДА ПАРАЛЛЕЛЬНЫ СЛЕДОВАТЕЛЬНО ПЛОСКОСТЬ СС1В1В ПАРАЛЛЕЛЬНА ПЛОСКОСТИ АА1DD1 ЧТО И ТРЕБОВАЛОСЬ ДОКАЗАТЬ.
Дано:
ABCD – прямоугольник;
АL – биссектриса угла BAD;
ВL=3 см;
LC=4 см.
Найти:
Р(ABCD)
Так как противоположные стороны прямоугольника паралельны, то AD//BC.
Следовательно угол ALB=угол DAL как накрест-лежащие при параллельных прямых AD u BC и секущей AL.
Угол BAL=угол DAL, так как AL – биссектриса угла BAD.
Исходя из найденного: угол ALB=угол BAL.
Тогда ∆ABL – равнобедренный с основанием AL. Следовательно АВ=BL=3 см.
Периметр прямоугольника можно найти по формуле:
Р=2*(а+б), где а и б – смежные стороны.
Тогда Р(АВСD)=2*(AB+BC)=2*(AB+BL+LC)=2*(3+3+4)=2*10=20 см.
ответ: 20 см.