1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²
Даны прямая (x-3)/2=(y+2)/4=z/1 и точка M(2;-1;2).
M1(3;-2;0) -уже заданная точка по условию задачи, которая принадлежит прямой .
Вектор ММ1{3-2;(-2)-(-1);0-2}={1;-1;-2}
q1{2;4;1} - направляющий вектор прямой (по условию задачи)
Векторы {x-3;y+2;z}, МM1, q1 - компланарны. Поэтому для них можно записать
x - 3 y + 2 z (x - 3)*(-1) + (y + 2)*(-4) + z*4 +
1 -1 -2 + (y + 2)*(-1) + (x - 3)*8 + z*2 =
2 4 1 = 0. = 7x - 21 - 5y - 10 + 6z.
Раскрыв определитель системы, приходим к уравнению
7x - 5y+ 6z - 31 = 0.
Это и будет искомое уравнение плоскости, которая проходит через точку M и прямую.