Дано : ΔABC остроугольный
AK ⊥ BC ; BD ⊥ AC ; AH =BC , H = AK ∩ BD ( H - точка пересечения высот)
∠BAC -?
ответ: 45° .
Объяснение:
Прямоугольные треугольники HDA и CDB равны ( третий признак равенства _ по гипотенузе и острому углу )
ΔHDA = ΔCDB
* * * ∠HDA = ∠BDC = 90 ° * * *
AH = BC ( гипотенузы по условию )
∠AHD =∠BCD углы со взаимно перпендикулярными сторонами : AH⊥ BC ; HD ⊥ AC (снова по условию) ,
следовательно AD = BD , т.е. прямоугольный треугольник ΔADB равнобедренный ⇒∠BAC = ∠ABC = 45° .
( ! Равенство второго пара катетов: HD = CD можно использовать при построения правильного чертежа. )
* * * Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны ( аналог второго признака равенства для "обычных "треугольников" ) * * *
* * * AK ⊥ BC ⇔ AH⊥ BC ; BD ⊥ AC ⇔ HD ⊥ AC ))) * * *
Решение:
Если точка A лежит между точками B и C, то по свойству измерения отрезков должно быть верно равенство: BC = AB +AC. Подставляем данные: BC = 4.3 + 7.5 ≠ 3.2. Значит, точка A не лежит между точками B и C.
Если точка C лежит между точками A и B, то должно быть верно равенство: AB = AC + BC. Подставляем данные: AB = 7.5 + 3.2 ≠ 4.3. Следовательно, точка C не лежит между точками A и B.я не могу понять как так 4.3+7.5=3.2 объясните
значит решая эту задачу нужно отнимать я просто прибавляла и ответ был 11.8 а должно быть 3.2
я туплю почему знак + а надо -