М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Клеоок
Клеоок
11.03.2020 10:27 •  Геометрия

Дата ГЕОМЕТРІЯ
Teme
Контрольна робота N 1. Координати на площині
Користуючись рисунком, визначте координати вершини D прямокутни-
жа ABCD.
UA
D
с (6; 4)
A
В
В
Г
(6:0)
(40)
(0;6)
(0;4)
0 A
B 2
А Б В Г
Укажіть координати середини відрізка NK, якщо м(-3;-2), к(-1;0).
A
Б
В
г
(-2-1)
(-1;-1)
(1; -1)
(1:1)
А Б В Г
Укажіть точку, яка належить четвертій координатній чверті.
Б
B
T
А Б В Г

👇
Открыть все ответы
Ответ:
Маширо11
Маширо11
11.03.2020

Допустим, что угол АСМ - это 3х, а угол ВСD ⇒ х.

В сумме углы АСМ и ВСD минус угол МСD дают 180°.

Логично, что если угол BCD - это х, то его половинки - это х/2.

Составим уравнение.

3х+х-х/2=180°

При выполнении несложных математических расчётов получается, что х(угол BCD)=51 3/7°

Следовательно, угол АСВ=180°-51 3/7°=128 4/7°

ответ: 51 3/7° и 128 4/7°.

(это то, что записано в условии. ответы странные, странные и смежные углы... АВС и ВСD не могут быть смежными. смежными могут быть только АСВ и ВСD, как указано в вопросе к задаче... смотри ещё раз условие внимательнее)


ответьте на задачу (с рисунком ). Углы АВС и ВСD-смежные, луч СМ- биссектриса угла ВСD, угол АСМ в
4,5(82 оценок)
Ответ:
Xylophone
Xylophone
11.03.2020
Так как AK - биссектриса, то:
\frac{BK}{AB}= \frac{KC}{AC} \ \ \textless \ =\ \textgreater \ \ \frac{BK}{KC}= \frac{AB}{AC}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda*x_2}{1+\lambda} \\y= \frac{y_1+\lambda*y_2}{1+\lambda} \\\lambda= \frac{m}{n}
ищем длины AB и AC:
используем формулу:
|AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|AB|=\sqrt{(-2-2)^2+(5-2)^2}=\sqrt{16+9}=5 \\|AC|=\sqrt{(-2-10)^2+5^2}=\sqrt{169}=13
\frac{BK}{KC}= \frac{AB}{AC}= \frac{5}{13} =\lambda
находим координаты точки K:
x_1=2;\ x_2=10;\ y_1=2;\ y_2=0;\ \lambda=\frac{5}{13} \\ \\K( \frac{2+ \frac{5}{13}*10 }{1+\frac{5}{13}} ;\frac{2+ \frac{5}{13}*0 }{1+\frac{5}{13}})=K( \frac{2+ \frac{50}{13} }{ \frac{18}{13}}; \frac{2}{ \frac{18}{13} })=K( \frac{ \frac{76}{13} }{ \frac{18}{13}}; \frac{26}{18} )=K( \frac{76}{18}; \frac{26}{18}) = \\=K( \frac{38}{9}; \frac{13}{9})=K(4 \frac{2}{9};1 \frac{4}{9} )
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
|BC|=\sqrt{(2-10)^2+2^2}=\sqrt{68}
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
AC^2=AB^2+BC^2-2*AB*BC*cosB \\2*AB*BC*cosB=AB^2+BC^2-AC^2 \\cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}
подставим значения:
cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}= \frac{25+68-169}{2*5*\sqrt{68}}= \frac{-76}{10\sqrt{68}} =- \frac{76}{10\sqrt{68}}
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: K(4 \frac{2}{9};1 \frac{4}{9} );\треугольник тупоугольный
4,4(14 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ