Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
Сечение цилиндра, параллельное оси - прямоугольник АВСD. Из центра О верхнего основания цилиндра проведем перпендикуляр ОН к хорде АВ. ОН по свойству перпендикуляра из центра к хорде делит АВ пополам. Треугольник АНО прямоугольный с острыми углами АОН=120º:2=60º и ОАН=90º-60º=30º. АН=АО*sin 60°=3√3 AB=2 AH=6√3 Образующую АD цилиндра найдем из прямоугольного треугольника АDС, где гипотенуза АС- диагональ сечения, катет АD - образующая цилиндра, катет DС - хорда=основание сечения. СD=АВ АD=СD:ctg 60=6√3*√3=18 --------- Диагональ сечения и ось цилиндра не параллельны и не пересекаются. АС и ОО1 - скрещивающиеся прямые. Угол между скрещивающимися прямыми - это угол между параллельными им прямыми, лежащими в одной плоскости. Проведем из Н прямую НМ параллельно ОО1. АС и НМ пересекаются в точке М1. Треугольник МСМ1= прямоугольный, угол МСМ1=60º, угол СМ1М - 30º Угол СМ1М - угол между диагональю сечения и осью цилиндра.
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.