(х-а)²+(у-в)²=R²- уравнение окружности где (а;в)-координаты центра окружности R--радиус (х-2)²+(у-3)²=4² (х-2)²+(у-3)²=16 начало координат имеет координаты О(0;0) (х-0)²+(у-0)²=(5/2)² x²+y²=25/4 (R=5/2) X²+y²=25 (R=5) 2. C x=(2+4)÷2 y=(7+5)÷2 x=3 y=6 C (3 ; 6) координаты середины отрезка находятся за формулой х=(х1+х2)÷2; у=(у1+у2)÷2 где (х1; у1) (х2;у2) координаты конца отрезка АВ ((4-2); (7-5)) АВ (2;2) АВ²=(4-2)²+(7-5)²=2²+2²=4+4=8 АВ=√8=√4·2=√2²·2=2√2 y=kx+b уравнение прямой если прямая проходит через точки значит ее координаты удовлетворяют уравнение прямой 5=2k+b (×-1) -5=-2k-b 7=4k+b первое уравнение + второе 2=2k k=2/2=1 5=2·1+b b=5-2=3 y=x+3 уравнение прямой которая проходит через точки А и В
Найти площадь треугольника, координаты вершин которого А(-1;-7), В(3;1) и С(4;-13).
Есть несколько вариантов решения.
1) Прямо по координатам вершин по формуле:
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) - вершины треугольника, тогда его площадь выражается формулой:
1/2 |x1-x3 y1-y3|
|x2-x3 y2-y3|
В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:
x1-x3 y1-y3
x2-x3 y2-y3 =
-1 - 4 -7 - (-13)
3 - 4 1 - (-13) =
-5 6
-1 14 = -5*14 - (-1)*6 = -64
По формуле получаем:S = (1/2)*|-64| = 32 кв. ед.
2) вышеприведенное решение - основано на векторном произведении.
Площадь равна половине модуля векторного произведения векторов
АВ и АС.
Находим векторы.
АВ = (3-(-1); 1-(-7)) = (4; 8)
АС = (4-(-1); -13-(-7)) = (5; -6).
Находим их векторное произведение с применением схемы Саррюса.
i j k| i j
4 8 0| 4 8
5 -6 0| 5 -6 = 0i + 0j - 24k - 0j - 0i - 40k = 0i + 0j - 64k.
Модуль равен √(0² + 0² + (-64)²) = 64.
Тогда площадь S = (1/2)*64 = 32 кв. ед.
3) Можно применить формулу Герона, предварительно определив длины сторон.
Координаты векторов сторон
АВ (c) BC (a) AС (b)
x y x y x y
4 8 1 -14 5 -6
Длины сторон АВ (с) = 16 64 80 = 8,94427191
BC (а) = 1 196 197 = 14,03566885
AC (b) = 25 36 61 = 7,810249676
Полупериметр р = 15,39509522
Площадь по Герону 15,39509522 6,450823307 1,359426369 7,584845541 = 32.