1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги: ответ: см. 2. Найдем сторону квадрата a: Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата. Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой: Найдем площадь правильного треугольника: . ответ: см.
Т. к проведена высота к стороне параллелограмма, то образуется угол 90 градусов, если рассмотреть треугольник, то он будет равнобедренный (180-(90+45)=45 градусов второй угол), а значит сторона треугольника будет равна 4 см, а сторона параллелограмма будет 8 см (т. к разделена пополам), найдем еще одну сторону параллелограмма, это периметр минус удвоенное произведение известной стороны и все разделить пополам (27,4 - 2*8)/2= 5, 7 см значит стороны параллелограмма 8 см и 5,7 см диагональ соответственно равна его стороне т.е 5,7 см
Прямая, параллельная оси ординат имеет уравнение х = а, здесь а - абсцисса точки, через которую эта прямая проведена, т.е а = -2
Итак, имеем прямую, параллельную оси ординат х = -2.
Естественно, она пересекает абсциссу, имеющую уравнение у = 0, в точке
с координатами (-2; 0).
ответ: в) (-2; 0)