ответ:Нет,это не трапеция,у трапеции параллельные основания,а боковые стороны-нет.Если же вообще нет в наличии параллельных сторон,то это просто четырехугольник
Нехай даний трикутник ABC. За умовою трикутник АВС – рівнобедрений з основою АВ, тоді бічні сторони рівні АС = ВС, кути при основі рівні ﮮСАВ = ﮮСВА. За означенням бісектриси АN маємо ﮮСАВ = 2ﮮСАN. За означенням бісектриси ВМ маємо ﮮСВА = 2ﮮСВМ. Розглянемо трикутники AСN і BCM. За стороною АС = ВС та прилеглими кутами ﮮСАN = ﮮСВМ, кут АСВ спільний трикутники рівні ∆САN = ∆СВМ. У рівних трикутників рівні відповідні сторони АN = BM. А вони є шуканими бісектрисами рівнобедреного трикутника, проведені з вершин кутів при основі.
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
ответ:Нет,это не трапеция,у трапеции параллельные основания,а боковые стороны-нет.Если же вообще нет в наличии параллельных сторон,то это просто четырехугольник
Объяснение: