Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
9км
Объяснение:
Пусть х км/ч первоначальная скорость машины, у л - скорость вытекания воды, А л - воды вмещается в машину.Тогда А/у ч - время расхода воды, А*х/у км - длина дороги, которую можно полить.
Тогда при увеличении скорости движения в 2 раза, а скорости вытекания воды в 3 раза получим, А/(3у) ч - время расхода воды, (А*2х)/(3у) =4 км - длина дороги.
Если начальную скорость движения увеличить в 3 раза, а скорость вытекания воды увеличить в 2 раза, получим А/(2у) ч - время расхода воды, (А*3х)/(2у) км - длина дороги, которую можно полить.
Из выражения (А*2х)/(3у)=4 выразим А=(4*3у)/(2х)
подставим А в выражение (А*3х)/(2у)=(4*3у*3х)/(2х*2у)=(4*3*3)/(2*2)=9 км