М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sergeyyakimov05
sergeyyakimov05
21.07.2020 20:40 •  Геометрия

Хорда нижнего основания цилиндра отсекает от окружности основания дугу в 120 градусов. отрезок,соединяющий центр верхнего основания с серединой данной хорды,равен 4 корня из 2 см и образует с плоскостью основания угол 45 градусов. найдите площадь осевого сечения цилиндра

👇
Ответ:
Ulugbek9i
Ulugbek9i
21.07.2020
А - центр верхнего основания,
О - центр нижнего основания,
АО перпендикуляр к плоскости нижнего основания, ОН - проекция АН на основание, значит ∠АНО = 45°.

ΔАНО: ∠АОН = 90°, АН = 4√2 см\, ∠АНО = 45°, ⇒ ∠НАО = 45°, ⇒ АО = ОН = х
             по теореме Пифагора
             x² + x² = (4√2)²
2x² = 32
x² = 16
x = 4                (- 4 не подходит по смыслу задачи)
АО = ОН = 4 см

В треугольнике ОВС ОН - медиана и высота (ОВ = ОС как радиусы),
∠ОВС = ∠ОСВ = (180° - 120°)/2 = 60°/2 = 30°

ΔОВН: ∠ОНВ = 90°, ∠ОВН = 30°, ОН = 4 см, ⇒ ОВ = 8 см

Осевое сечение цилиндра - прямоугольник, одна сторона которого равна диаметру основания, а другая - высоте цилиндра.

S = 2·OB·AO = 2 · 8 · 4 = 64 см²
4,6(15 оценок)
Открыть все ответы
Ответ:
Link2009
Link2009
21.07.2020

Нужно опустить перпендикульрную прямую  из вершина угла на плоскость. Получится октаэдр 

Угол между плоскостью и треугольником это угол между треугол. и треугол. снования.

Кактет треугольника обозначим буквой а. А высоту а корней из 2

Боковая грань октаэдра. Прям. треуг. с уголом в 30 градусов и гипотнузой будет а.Второй же катет будет a/2.

 

 

В искомом треуг, образован.высотами известны катет и гипотенуза, по ним определять синус или косинус( на выбор), и потом по ним скать угол. 

Синус противолежащий катет к гипотенузе

косинус прилежащий катет к гипотенузе.

4,6(15 оценок)
Ответ:
sargsyantatev1
sargsyantatev1
21.07.2020
Дано:
ω(O1; R1)
ω(O2; R2)
ω(О1;R1)∩ω(O2;R2) = N
AC, BD - общие касательные
A∈ω (O1;R1)
B∈ω(O1; R1)
C∈ω (O2;R2)
D∈ω(O2; R2)
R1 = 12
R2 = 20
AH⊥CD
---------------------
AH - ?

Решение:
Пусть O1E⊥CO2. Тогда AO1CE - прямоугольник, т.к. ∠O1AC = ∠ACO1 = ∠O1EC = 90°.
Тогда AC = O1E - как противоположные стороны прямоугольника.
O1O2 = R1 + R2.
CE = AO1 - опять же, .к. AO1EC - прямоугольник. Тогда CE = R2 - AO1 = R2 - R1.
По теореме Пифагора в ∆O1EC:
O1E = √O1O2² - EO2² = √(R1 + R2)² - (R2 - R1)² = √R1² + 2R1R2 + R2² - R2² + 2R1R2 - R1² = √4R1R2 = 2√R1R2.
∠ACH =1/2UCD - как угол между касательной и хордой.
∠O1O2C = UNC = 1/2UCD (т.к. UNC = UND) - как центральный угол.
Тогда ∠O1O2C = ∠ACD => sinACD = sinO1O2C.
sinO1O2C = O1E/O1O2 = 2√R1R2/(R1 + R2) => sinACD = 2√R1R2/(R1 + R2).
sinACD = AH/AC => AH = sinACD•AC = 2√R1R2•2√R1R2/(R1 + R2) = 4R1R2/(R1 + R2)
Подставляем значения R1 и R2:
AH = 4•12•20/(12 + 20) = 960/32= 30.
ответ: 30.

Окружности радиусов 12 и 20 касаются внешним образом. точки а и в лежат на первой окружности, точки
4,7(59 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ