1) Пусть средняя линия будет KH Проведем высоту BT к основанию AD угол ABT = 30 градусов, поэтому AT = 6 Проведем высоту CJ к основанию AD JD = CD так как треугольник CJD - равнобедренный Средняя линия трапеции: 1/2(BC+AD) = 1/2(8 + 8+ 10 + 6) = 1/2 * 32 = 16
2) Назовем данную трапецию ABCD, где BC, AD - основания, проведем две высоты BK, CL, тогда длина AK будет равна 5 см, а длина KD будет равна 12 см, тогда длина LD будет равна длине AK и будет равна также 5 см. KL = KD - LD = 12 - 5 = 7 см. Так как длина KL равна длине меньшего основания, тогда длина BC также равна 7 см, можем найти среднюю линию трапеции, если BC = 7 см, AD = 17 см. (BC + AD) / 2 = (7 + 17) / 2 = 12 см. ответ: длина средней линии 12 см.
Во первых, уточним, что прямая р лежит в ОДНОЙ плоскости с треугольником АВС. Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну". Следствие из этой аксиомы: Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного. Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых. Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB. Что и требовалось доказать.
Проведем высоту BT к основанию AD
угол ABT = 30 градусов, поэтому AT = 6
Проведем высоту CJ к основанию AD
JD = CD так как треугольник CJD - равнобедренный
Средняя линия трапеции: 1/2(BC+AD) = 1/2(8 + 8+ 10 + 6) = 1/2 * 32 = 16
2) Назовем данную трапецию ABCD, где BC, AD - основания, проведем две высоты BK, CL, тогда длина AK будет равна 5 см, а длина KD будет равна 12 см, тогда длина LD будет равна длине AK и будет равна также 5 см.
KL = KD - LD = 12 - 5 = 7 см.
Так как длина KL равна длине меньшего основания, тогда длина BC также равна 7 см, можем найти среднюю линию трапеции, если BC = 7 см, AD = 17 см.
(BC + AD) / 2 = (7 + 17) / 2 = 12 см.
ответ: длина средней линии 12 см.