ответ: S=60см²
Объяснение: высота данного треугольника делит его на 2 прямоугольных треугольника, в котором боковая сторона- это гипотенуза, а высота- это катет. По теореме Пифагора найдём 2-й катет получившегося прямоугольного треугольника:
13²-12²=√(169-144)=√25=5см
Мы нашли часть основания первоначального треугольника и, зная, что он равнобедренный, то высота, проведённая к основанию, является ещё и медианой и делит это основание пополам, поэтому часть найденного основания равна второй его части и равна 5см. Поэтому основание треугольника будет: 5×2=10см; основание=10см.
Зная, что площадь треугольника равна полупроизведению его высоты на основание, к которому проведена, найдём площадь треугольника по формуле: ½×а×h, где h-высота, "а"-сторона, к которой проведена высота:
½×10×12=60см²; S=60см²
Соотношение между сторонами и углами прямоугольного треугольника. Решение прямоугольных треугольников
В прямоугольном треугольнике катет, противоположный одного из острых углов, равна произведению гипотенузы на синус этого угла.
В прямоугольном треугольнике катет, противоположный одного из острых углов, равна произведению прилегающего катета на тангенс этого угла.
В прямоугольном треугольнике катет, прилегающий к одному из острых углов, равна произведению гипотенузы на косинус этого угла.
В прямоугольном треугольнике катет, прилегающий к одному из острых углов, равна произведению противоположного катета на единицу, разделенную на тангенс этого угла.
Гипотенузы прямоугольного треугольника равен отношению противоположного одного из острых углов катета к синуса этого угла.
Гипотенузы прямоугольного треугольника равен отношению прилегающего к одному из острых углов катета к косинуса этого угла.
Задача на решение прямоугольных треугольников - это задача на нахождение неизвестных сторон и углов треугольника с его известными углами и сторонами.
При решении прямоугольных треугольников используются теорема Пифагора и его последствия, соотношение между сторонами и углами прямоугольного треугольника и метрические соотношения в прямоугольном треугольнике.
Запомните.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы и радиуса окружности, описанной около этого треугольника.
Произведение катетов прямоугольного треугольника равна произведению его гипотенузы на высоту, проведенную к гипотенузе.
В прямоугольном треугольнике проекции катетов на гипотенузу относятся как квадраты соответствующих катетов.