1. Обозначим точки пересечения с прямой L: А1 и В1 соответственно точкам А и В. Расстояние от точки до прямой определяется длиной перпендикуляра, следовательно, надо найти АА1. Когда сделаем чертеж, получим прямоугольную трапецию АА1ВВ1. Обозначим точку на прямой l M1. То есть: АА1, BB1 и MM1 ⊥ L, и AA1, MM1 и ВВ1 ║L.
2. Зная, что АМ=МВ (по условию) и АА1, ММ1 и ВВ1 ║а (п. 1) получим: А1М1=М1В1 (по теореме Фалеса).
3. Найдем АА1 по формуле средней линии трапеции: (АА1+12)/2=16, отсюда АА1 = 20 см.
ответ: 20 см
Рассмотрим один из равных треугольников, разделённых высотой.
один катет = 48 (это высота)
второй катет обозначим 7x
гипотенузу обозначим 25x (это сторона большого треугольника)
уравнение: 625x² = 2304 + 49x² - по теореме Пифагора.
Решаем:
576x² = 2304
x² = 4
x = 2
отсюда гипотенуза маленького треугольника, она же сторона большого треугольника равна 2*25 = 50
катет маленького треугольника, он же 1/2 основания большого треугольника
3*7 = 21, а всё основание равно 21*2 = 42
Искомая площадь треугольника равна 42*48 / 2 = 1008 см²
Объяснение:
90°
Объяснение:
сумма всех углов треугольника - 180°
нужно просто отнять угол MKO и MPO
доказательство н.2
т.к у треугольника KMO 2 стороны равны
угол MKO = KMO
теперь можем найти угол КОМ
КОМ = 180° - МКО - КМО = 180° - 70° - 70° = 40°
Теперь находим MOP
MOP = 180° - KOM = 180° - 40° = 140°
МОР = 140°
ОРМ = 20°
значит ОМР = 180° - МОР - ОРМ = 180° - 140° - 20° = 20°
тепепь можем просто сложить 2 угла
KMP = KMO + OMP = 70° + 20° = 90°