М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fhdjfjfuf
fhdjfjfuf
03.11.2022 16:05 •  Геометрия

За даними Мал. 3 визначте, чи паралельні прямі АВ і CD.


За даними Мал. 3 визначте, чи паралельні прямі АВ і CD.

👇
Ответ:
glokol
glokol
03.11.2022

Так, вони паралельні

Объяснение:

Проведемо через точку E пряму EF, яка буде паралельна прямій AB. Отримаємо січну EA, і внутрішній односторонній кут EAB = 142°. Якщо дві паралельні прямі перетинаю третя, то сума внутрішніх односторонніх кутів дорівнює 180°. ∠AEB = 180° - ∠EAB = 180°- 142° = 38°

Пряма EF ділить кут AEC на два кути : ∠AEC i ∠FEC

∠FEC = 60° - ∠AEC = 60° - 38° = 22°

Дві прямі паралельні, якщо сума внутрішніх односторонніх кутів дорівнює 180°. ∠FEC + ∠ECD = 22° + 158° = 180° EF║CD

Оскільки дві прямі, паралельні третій паралельні між собою AB║CD

4,7(79 оценок)
Открыть все ответы
Ответ:
аня2934
аня2934
03.11.2022

Углы каждой пары равны между собой  (каквертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.

Поэтому ∠1=∠А+∠С,  ∠2=∠А+∠В, ∠3=∠В+∠С.

Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна

∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).

Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.

Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.

4,8(58 оценок)
Ответ:
dizzone
dizzone
03.11.2022

Углы каждой пары равны между собой  (каквертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.

Поэтому ∠1=∠А+∠С,  ∠2=∠А+∠В, ∠3=∠В+∠С.

Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна

∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).

Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.

Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.

4,7(100 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ