М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Johngear
Johngear
14.11.2020 08:51 •  Геометрия

Найдите координаты вектора AB если A ( -6;0) B ( 4;5) Полностью и с объяснением

👇
Ответ:
sergejkochetko
sergejkochetko
14.11.2020

ответ:АВ(10;5)

Объяснение:

Координаты АВ находим за формулой:

АВ(х2-х1);(у2-у1),тоесть от координатов конца вектора "а" отнимаем начало вектора ",а" ,с вектором "В" аналогично

Подставляем:

АВ(4-(-6));(5-0)

АВ(10;5)

4,6(40 оценок)
Ответ:
kresofbro
kresofbro
14.11.2020

Відповідь:

АВ(10;5)

Пояснення:

АВ вектор, А-початок вектора

                   В- кінець вектора       щоб знайти координати цілого вектору,треба відповідну координату по Х кінця(Вх) відняти координату початку (Ах)  так само і по У          АВ(4-(-6);5-0)     АВ(10;5)

4,7(60 оценок)
Открыть все ответы
Ответ:
Амиiskdhdm
Амиiskdhdm
14.11.2020
1. l_{n} = \frac{\pi R}{180} *n, где n - градусная мера соответственного центрального угла.
Найдем радиус окружности:
S= \pi R^{2} =36 \pi ; \\ 
R= \sqrt{ \frac{S}{ \pi } } = \sqrt{ \frac{36 \pi }{ \pi } }=6, где S - площадь круга.
Найдем длину дуги:
l_{20}= \frac{6 \pi }{180} *20= \frac{2}{3} \pi
ответ: \frac{2}{3} \pi см.
2. Найдем сторону квадрата a:
S= a^{2} = 48; \\ 
a= \sqrt{48} =4 \sqrt{3}.
Радиус вписанной в квадрат окружности равен:
R= \frac{a}{2}, где a - сторона квадрата.
R= \frac{4 \sqrt{3} }{2} =2 \sqrt{3}
Площадь вписанного треугольника равна:
S= \frac{ c^{2} \sqrt{3} }{4}, где c - сторона правильного треугольника.
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
R= \frac{c}{ \sqrt{3} } ; \\ 
c=R* \sqrt{3} =2 \sqrt{3} * \sqrt{3} =6.
Найдем площадь правильного треугольника:
S= \frac{ c^{2} \sqrt{3} }{4} = \frac{36 \sqrt{3} }{4} =9 \sqrt{3}.
ответ: 9 \sqrt{3} см.
4,4(56 оценок)
Ответ:
Yasmin11111
Yasmin11111
14.11.2020

В равностороннем треугольнике все очень просто. Сначала находим ВЫСОТУ из точки В, она равна 13*корень(3)/2. По идее уже тут можно воспользоваться тем, что высота - одновременно и медиана, то есть найти её (высоту-медиану) из прямоугольного треугольника с гипотенузой 13 и одним из катетов 13/2. Второй катет (то есть высота-медиана) будет как раз 13*корень(3)/2 (теорема Пифагора :)).

А теперь вспоминаем, что точка О лежит на этой медиане-высоте на расстоянии 2/3 её длины, считая от вершины.

То есть ОВ = (13*корень(3)/2)*(2/3) = 13*корень(3)/3.

4,7(37 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ