пирамида КАВСД, К-вершина, АВСД-квадрат, АВ=ВС=СД=АД=3*корень2, площадьАВСД=АД в квадрате=(3*корень2) в квадрате=18
О-центр основания (пересечение диагоналей), КО-высота пирамиды, КА=КВ=КС=КД=6, проводим апофему КН на СД, треугольник ДКС равнобедренный, КН=высоте=медиане, СН=НД=1/2СД=(корень18)/2,
треугольник ДКН прямоугольный, КН=корень(КД в квадрате-НД в квадрате)=корень(36-18/4)=(корень126)/2
площадь боковой=1/2 *периметрАВСД*КН=1/2*4*3*корень2*((корень126)/2)=18*корень7
площадь полная=площадьАВСД+площадь боковая=18+18*корень7=18*(1+корень7)
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.