Медиана, проведенная из вершины прямого угла равнобедренного прямоугольного треугольника abc , равна 2 см . найдите гипотенузу и катеты этого треугольника .
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник. В прямоугольнике диагонали равны. Значит гипотенуза ВС равна 4см. По Пифагору находим катеты: ВС² = 2Х², откуда Х = 2√2см.
Yt pyf. ghfdbkmyj bkb ytnS=полусумме оснований на высоту S=1/2( a+b)*h средняя линия равна полусумме оснований,= 1/2( a+b). Следовательно нужно найти высоту. Проведём из точки С высоту СН. Рассмотрим треугольник СНD- он п/у. Т. к Угол D=45, следовательно угол НСD= 45 ( свойство углов прямоугольного треугольника). Следовательно, он не только прямоугольный но и равнобедренный. CD- это гипотенуза. Обозначим один катет за х, тогда и другой тоже х( т к треугольник р/б) По теореме Пифагора х² + х²= 40². 2 х²=1600. х²=800. х=20√2. S= 42*20 √2. S= 840√2
Yt pyf. ghfdbkmyj bkb ytnS=полусумме оснований на высоту S=1/2( a+b)*h средняя линия равна полусумме оснований,= 1/2( a+b). Следовательно нужно найти высоту. Проведём из точки С высоту СН. Рассмотрим треугольник СНD- он п/у. Т. к Угол D=45, следовательно угол НСD= 45 ( свойство углов прямоугольного треугольника). Следовательно, он не только прямоугольный но и равнобедренный. CD- это гипотенуза. Обозначим один катет за х, тогда и другой тоже х( т к треугольник р/б) По теореме Пифагора х² + х²= 40². 2 х²=1600. х²=800. х=20√2. S= 42*20 √2. S= 840√2
Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник.
В прямоугольнике диагонали равны. Значит гипотенуза ВС равна 4см. По Пифагору находим катеты: ВС² = 2Х², откуда Х = 2√2см.