1.Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
Решение.
Треугольники HOBи KOB равны, т. к. являются прямоугольными с общей гипотенузой и равными катетами, значит, HB=KB=3
PABC=AC+CB+AH+HB=2CB+2HB=16+6=22
ответ: 22
2. В равнобедренный треугольник АВС с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ = 8 и ВМ = 12.
S=1/2p*r
r=2s/p
Т.к треугольник ABC-равнобедренный, то AB=AC=30
По свойству касательных: АМ=АЕ=8, СЕ=СК=12,ВМ=КВ=12,значит ВС=24
По формуле Герона S треугольник = в корне p(p-a)(p-b)(p-c)
Сколько бы ни было сторон у многоугольника выпуклого - чсе равно можно будет в центре его поставить точку. А если ту точку соединить с вершинами этого многоугольника - получится столько треугольников, сколько сторон у многоугольника.. Очевидно, что сумма его (многоугольника) углов будет равна сумме углов всех этих треугольников минус 360 градусов - это все углы около той вершины всех этих треугольников, которая в поставленной нами точке находятся. Даже мне известно, что сумма углов любого треугольника = 180 градусов. то есть - сумма углов многоугольника должна соответствовать таким условиям:
180 *n - 360, где n - количество вершин (=количество сторон) многоугольника. Получается, что нам нужно проверить, кратна ли 180 сумма данного числа и 360
проверяем: вот сумма: 1980+360 = 2340
проверяем кратнсть: 2340/180 = 13
поделилось нацело, а это значит, что
ответ:существует выпуклый многоугольник, сумма углов которого равна 1980. мало того, мы знаем, это - тринадцатиугольник!)
1.Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
Решение.
Треугольники HOBи KOB равны, т. к. являются прямоугольными с общей гипотенузой и равными катетами, значит, HB=KB=3
PABC=AC+CB+AH+HB=2CB+2HB=16+6=22
ответ: 22
2. В равнобедренный треугольник АВС с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ = 8 и ВМ = 12.
S=1/2p*r
r=2s/p
Т.к треугольник ABC-равнобедренный, то AB=AC=30
По свойству касательных: АМ=АЕ=8, СЕ=СК=12,ВМ=КВ=12,значит ВС=24
По формуле Герона S треугольник = в корне p(p-a)(p-b)(p-c)