Объяснение:
В прямоугольном треугольнике АВС угол С прямой,
катеты равны 15 см и 20 см.
Найдите косинус , синус и тангенс угла В.
Решение.
Косинус (cosB)- отношение прилежащего катета (ВС=20 см) к гипотенузе.
Находим гипотенузу по т. Пифагора
АВ²=АС²+ВС² = 15²+20²=225+400=625;
АВ = √625=25 см. Тогда
cosB = 20/25 = 4/5 = 0.8.
Cинус угла В (sinB) равен отношению противолежащего катета (AC=15 см) к гипотенузе (АВ=25 см)
sinB = 15/25 = 3/5 = 0,6.
Тангенс угла В (tgB) равен отношению противолежащего катета (AC=15 см) к прилежащему (ВС=20 см)
tgB =15/20 = 3/4 = 0.75.
Пронумеруем острова.
Заметим, что на остров В нужно приходить со стороны 20 острова, так как в противном случае мы попадем на остров В, не побывав на 20 острове.
По тем же причинам на 15 остров нужно приходить со стороны 10 острова.
Далее, на 4 остров нужно приходить со стороны 3 острова.
На 7 остров нужно приходить со стороны 8 острова, иначе траектория замкнется до того момента как все острова попадут в маршрут.
На 8 остров нужно приходить со стороны 9 острова, иначе он не попадет в маршрут. С 11 острова нужно следовать в сторону 16 острова.
С 22 острова нужно следовать в сторону 23 острова, чтобы включить его в маршрут.
Далее маршрут достраивается единственным образом. С острова С необходимо двигаться на восток.
ответ: Г) на восток
0,25V
Объяснение:
Треугольник с вершинами в серединах сторон другого треугольника подобен этому треугольнику, с коэффициентом подобия 0,5. Это доказывается очень просто.
Стороны треугольника вершины которого середины другого являются средними линиями большего треугольника. Значить они пропорциональны, с коэффициентом пропорциональности равным 0,5.
Получается, что площадь основания внутренней пирамиды составляет (0,5)²=0,25, то есть четверть площади основания большей пирамиды.
Так как высоты пирамид равны, то их объёмы прямо пропорциональны площадям оснований. Из чего следует, что объём меньшей пирамиды равен 0,25V
Решение в изображении ниже
Объяснение: