Дано: ABCD - трапеция; AD║BC; ∠ABC = 160°; ∠BCD = 110° FG = 8 - средняя линия NE = 3; BN=NC; AE=ED
Продлить стороны AB и DC ⇒ получился ΔBMC ∠MBC = 180° - ∠ABC = 180°-160° = 20° ∠BCM = 180° - ∠BCD = 180°-110° = 70° ∠BMC = 180° - ∠MBC - ∠BCM = 180° - 20° - 70° = 90° ⇒ ΔBMC - прямоугольный ⇒ медиана MN равна половине гипотенузы BC MN = BN = NC = X ⇒ ΔMNC - равнобедренный
BC║FG - средняя линия трапеции ⇒ ΔKMG подобен ΔNMC по двум соответственным углам ⇒ MK = KG ⇒ X + ЕN/2 = FG/2 X = 4 - 1,5 = 2,5 BC = 2X = 5 Средняя линия FG = (BC + AD)/2 = 8 BC + AD = 16; AD = 16 - 5 = 11
Найлем для начало стороны AB=√(8-4)^2+(2-6)^2 =√ 16 +16=2√8CD=√(-2-4)^2+(-1+3)^2 =√36+4 =√40 BC=√(4-8)^2+(-3-2)^2=√16+25=√41AD=√(-2-4)^2+(-1-6)^2=√36+49=√85 на рисунке можно видеть что это трапеция выходит, можно раздлить эту трапецию на два треугольника затем найти площадь каждой и суммировать Площадь треугольника S=ab/2*sinaнайдем угол между АВ и AD через скалярAB {4;-4}AD{-6;-7}cosa=4*-6+ 4*7 / √32*85 = 4/√2720теперь sina=√1-16/2720=52/√2720теперь площадь S= 52/√2720 * √2720/2 = 26 теперь площадь другого треугольника опять угол B (8; 2), C (4; -3), D (-2; -1) ВС={-4;-5} CD={-6;2} cosa= 24-10/√1640 = 10/√1640 sina = √1-100/1640 = √1540/1640 S=√41*40/2 * √1540/1640 =√1540/2 = √385 S=√385+26 площадь искомая
FG = 8 - средняя линия
NE = 3; BN=NC; AE=ED
Продлить стороны AB и DC ⇒ получился ΔBMC
∠MBC = 180° - ∠ABC = 180°-160° = 20°
∠BCM = 180° - ∠BCD = 180°-110° = 70°
∠BMC = 180° - ∠MBC - ∠BCM = 180° - 20° - 70° = 90° ⇒
ΔBMC - прямоугольный ⇒
медиана MN равна половине гипотенузы BC
MN = BN = NC = X ⇒ ΔMNC - равнобедренный
BC║FG - средняя линия трапеции ⇒
ΔKMG подобен ΔNMC по двум соответственным углам ⇒
MK = KG ⇒ X + ЕN/2 = FG/2
X = 4 - 1,5 = 2,5
BC = 2X = 5
Средняя линия FG = (BC + AD)/2 = 8
BC + AD = 16; AD = 16 - 5 = 11
Основания трапеции равны 5 и 11