В основе правильной четырёхугольной призме лежит квадрат. Диагональным сечением призмы является прямоугольник, и так как известна его площадь, найдём его вторую сторону по формуле обратной формуле площади:
АВ1=ДС1=130÷5√2=26√2см
Вторая сторона диагонального сечения также является диагональю в гранях АА1В1В и ДД1С1С. Диагональ делит эти грани на 2 равных прямоугольных треугольника, в которых сторона основания и высота призмы являются катетами а диагональ гипотенузой. Зная сторону и диагональ найдём высоту призмы по теореме Пифагора:
ДД1²=С1Д²-СД2=(26√2)²-(5√2)²=
=676×2-25×2=1352-50=1302; ДД1=√1302см
Теперь найдём объем призмы, зная стороны и высоту по формуле:
V=а²×h, где а- стороны основания, а h-высота призмы:
Пусть в тр-ках авс и а (1)в (1)с (1) 1) равны медианы вк и в (1)к (1) , 2) угол авк =углу а (1)в (1)к (1) 3) угол свк = углу с (1)в (1)к (1) доказать, что тр-к авс = тр-ку а (1)в (1)с (1) доказательство в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1) 1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные) 2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1) отсюда следует 3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1) 4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам 5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1), 6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
В основе правильной четырёхугольной призме лежит квадрат. Диагональным сечением призмы является прямоугольник, и так как известна его площадь, найдём его вторую сторону по формуле обратной формуле площади:
АВ1=ДС1=130÷5√2=26√2см
Вторая сторона диагонального сечения также является диагональю в гранях АА1В1В и ДД1С1С. Диагональ делит эти грани на 2 равных прямоугольных треугольника, в которых сторона основания и высота призмы являются катетами а диагональ гипотенузой. Зная сторону и диагональ найдём высоту призмы по теореме Пифагора:
ДД1²=С1Д²-СД2=(26√2)²-(5√2)²=
=676×2-25×2=1352-50=1302; ДД1=√1302см
Теперь найдём объем призмы, зная стороны и высоту по формуле:
V=а²×h, где а- стороны основания, а h-высота призмы:
V=(5√2)²×√1302=25×2×√1302=
=50√1302см³
ОТВЕТ: V=50√1302см³