Точка В - середина відрізка АС, точки М і К знаходяться по один бік від прямої АС, при чому Кут АМВ = куту КВС = куту МАВ = куту ВСК, доведіть шо Кут ВМК = Куту АМВ
Здесь удобно воспользоваться формулой : отрезок параллельный основаниями проходящий через точку пересечения диагоналей, концы которого лежат на боковых сторонах равен среднему гармоническому оснований. Т.е. он равен удвоенному произведению оснований деленному на их сумму. Теорему можно найти, но и несложно вывести. Тогда, обозначив неизвестное основание за х, получим : 1,6*(4+х)=8х 4+х=5х х=1 Меньшее основание равно 1. Расстояние между серединами диагоналей равно (средняя линия - меньшее основание)=(4+1)/2-1=1,5
Пусть АВ- хорда, О - центр окружности Т.к. АО=ОВ и угол АОВ=60, то АОВ - равносторонний Заметим, что мы сможем построить еще 5 таких треугольников, так как 360/60=6 (Будем откладывать от АО углы в 60 и получать равные треугольники) Площадь окружности = П*R^2 Т.к. АОВ - р/с => АО=AB=10 см А значит R=10 см Обозначил площадь АОВ = S1, а площадь сегмента = S2, тогда сумма площадей треугольников и сегментов = площади круга, или 6S1+6S2=П*R^2 Площадь равностороннего треугольника S1= √(75)*10/2= √(75)*5 Тогда 6( S2+ √(75)*5)=3,14*10^2 S2=3,14*100/6- √(75)*5 S2=113,77
1,6*(4+х)=8х
4+х=5х
х=1
Меньшее основание равно 1.
Расстояние между серединами диагоналей равно (средняя линия - меньшее основание)=(4+1)/2-1=1,5