М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anonim000002
anonim000002
09.05.2021 10:32 •  Геометрия

4 Чи можна стверджувати, що коли дві сторони і кут одного i трикутника дорівнюють двом сторонам і куту іншого три- кутника, то такі трикутники між собою рівні? Обгрунтуйте, подавши схематичні малюнки.

👇
Открыть все ответы
Ответ:
Kaser3er
Kaser3er
09.05.2021

Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см,  наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.

Решение второй задачи сводится к следующему.

М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е.  ВМ⊥АС, по условию МQ⊥ВМ.

Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее,  MQ и AС,

и по признаку перпендикулярности прямой и плоскости, т.е.

если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.

ВЫВОД.  ВМ⊥ (АQC), доказано.

PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.

4,7(35 оценок)
Ответ:
kostyaluch
kostyaluch
09.05.2021

1.

Только что решал эту же задачу прощения, без чертежа, нет такой возможности, но прямоугольный треугольник, надеюсь, начертить легко./ Узловые моменты объясняю.

Она на применение теоремы Пифагора. Здесь  наклонная MN- гипотенуза,  проекция наклонной на плоскость α, равная  8см, это катет. А расстояние до плоскости, подлежащее определению, это другой катет прямоугольного треугольника. Треугольник египетский. Два катета 6см и 8 см, значит, гипотенуза 10 см

ответ 10 см

2.

М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е.  ВМ⊥АС, по условию МQ⊥ВМ.

Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее,  MQ и AС,

и по признаку перпендикулярности прямой и плоскости, т.е.

если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.

ВЫВОД.  ВМ⊥ (АQC), доказано.

4,6(15 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ