Рассмотрим прямоугольник MNKP
NP = MK т.к. диагонали прямоугольника равны
OM = OK = NO = OP т.к. диагонали параллелограмма в точке пересечения делятся поровну
Рассмотрим треугольник NOM
NO = OM из этого следует, что треугольник NOM равнобедренный, с основанием NM
угол MNO = угол NMO т.к. углы при основании равнобедренного треугольника равны
угол MNO + угол NMO + угол NOM = 180 градусов
= угол MNO + угол NMO + 64 = 180 градусов
180 - 64 = 116
116 : 2 = 58
Угол OMN = 58 градусов
Рассмотрим прямоугольник MNKP
Углы прямоугольника равны 90 градусов
угол OMN + угол OMP = 90 градусов
угол OMN + 58 = 90 градусов
90 - 58 = 32
ответ: Угол OMP равен 32 градусам
Линия пересечения плоскости AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.
Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.
ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:
а) 
Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.
б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:

в) Найти площадь боковой поверхности - самая простая часть этого задания:
, где
и
- периметр основания и высота пераллелепипеда соответственно.

г) 
3,2 см
Объяснение:
Проведём высоту СК, перпендикулярно АД.
В треугольнике СДК(<К=90°) Угол С=90-45=45°
Следовательно треугольник СДК - равнобедренный.
=> СК= КД = АД-ВС= 7,3-4,1=3,2 см
АВ= СК=3,2 см - как стороны прямоугольника.