Расстояние от вершины C треугольника ABC до прямой AB - это высота, опущенная из вершины С на сторону АВ. Пусть основание этой высоты - точка К. Тогда в прямоугольном треугольнике ВКС катет КС в 2 раза меньше гипотенузы ВС, значит, он лежит против угла в 30 градусов. Так как прямая а параллельна ВС, то расстояние от точек В и С до прямой а одинаково. Опустим перпендикуляр ВД из точки В на прямую а, угол АВД будет равен 90-30 = 60 градусов. Тогда искомое расстояние до прямой а равно 10*cos60 = 10*0.5 = 5.
Т.к. BF - медиана и высота треугольника ABD, то AB=BD. На продоложении отрезка BA за точку A возьмем точку G так, что AG=AB и пусть H - точка пересечения прямой BE с GC. Тогда AB=BC и BH - биссектриса и медиана треугольника GBC, Е - точка пересечения его медиан, AD - его средняя линия. Т.к. треугольник GEH подобен треугольнику DEF с коэффициентом подобия 2, то S(GEH)=4S(DEF)=20. Т.к. медианы BH, CA и GD треугольника GBC делят его на 6 равновеликих треугольников (это так в любом треугольнике), то S(ABC)=3*S(GEH)=60.
а) 7см
Объяснение:
Відстань від точки до площини дорівнює довжині перпендикуляра, який опущений на площину з цієї точки.Так як усі ребра куба взаємно перпендікулярні, то А1Д1 перпендикулярна площині DCC1, і є відстанню від А1 до DCC1.