Андронов А No1. В задачах по рисунку запишите Дано, Найти, Перечертите рисунок, обозначьте прямые углы. Запишите формулу для вычисления и найдите неизвестное 1/ AA-перпендикуляр к плоскости , AB - наклонная. Найдите х. 2 AA,-перпендикуляр к плоскости , AB - наклонная. Найдите хиу, 12 У А. у 3/ АВ-перпендикуляр к плоскости a, AC и AD - наклонные. Найдите х. А . D в 6 s с 2. Даны точки А (4; 1; 2); B (1; 0; 1); C (-1; 2; -1); 1) Определите координаты AB, AC 2) Определите координаты 3. АВ - 2 - AC Определите |3 - АВ - 2 - AC 63. Ланы точки Ai(6; 5; 4); А(-1; 6; 3), As(1; 1; -1), A(0; 0; 1). Найти координаты и длины векторов AA, AA, AA4
косинус угла A = (b^2 + c^2 - a^2) / (2bc)
косинус угла B = (a^2 + c^2 - b^2) / (2ac)
косинус угла C = (a^2 + b^2 - c^2) / (2ab)
где a, b, c - длины сторон треугольника, противолежащих соответствующим углам.
Давайте по порядку найдем все необходимые значения.
Для удобства обозначим координаты точек следующим образом: A(x1;y1) = A(0;2), B(x2;y2) = B(3;7), C(x3;y3) = C(-1;5).
Сначала найдем длины сторон треугольника:
Длина стороны a = BC:
a = √[(x3 - x2)^2 + (y3 - y2)^2] = √[(-1 - 3)^2 + (5 - 7)^2] = √[16 + 4] = √20 = 2√5.
Длина стороны b = AC:
b = √[(x3 - x1)^2 + (y3 - y1)^2] = √[(-1 - 0)^2 + (5 - 2)^2] = √[1 + 9] = √10.
Длина стороны c = AB:
c = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(3 - 0)^2 + (7 - 2)^2] = √[9 + 25] = √34.
Теперь можем найти косинусы углов треугольника:
косинус угла A = (b^2 + c^2 - a^2) / (2bc)
косинус угла B = (a^2 + c^2 - b^2) / (2ac)
косинус угла C = (a^2 + b^2 - c^2) / (2ab)
косинус угла A = (10 + 34 - 20) / (2 * √10 * √34)
= 24 / (2 * √340)
= 12 / √340
= 12 / (2 * √85)
= 6 / √85
косинус угла B = (20 + 34 - 10) / (2 * 2√5 * √34)
= 44 / (4√5√34)
= 11 / (√5√34)
= 11 / (√170)
косинус угла C = (20 + 10 - 34) / (2 * 2√5 * √10)
= -4 / (4√5√10)
= -1 / (√5√10)
= -1 / (√50).
Получили значения косинусов всех углов треугольника. Не забывайте проверять результаты на соответствие требованиям задачи и условиям входных данных.