около равностороннего треугольника описан круг, а радиус вписанного в данный треугольник круга равен корень из 5 дм. Найдите площадь меньшего и большего кругов?
Точка равноудалена от сторон прямоугольного треугольника, => эта точка проектируется в центр вписанной в треугольник окружности. радиус вписанной в треугольник окружности: r=(a+b-c)/2 1. по теореме Пифагора: c²=a²+b². a=9 см, b=12 см c²=9²+12². c=15 см r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник: катет - расстояние от точки до плоскости треугольника, а=4 см катет - радиус вписанной в треугольник окружности, b=3 см гипотенуза - расстояние от точки до сторон треугольника, с. найти c²=3²+4² c=5 ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
Если треугольники подобны, то их углы соответственно равны. Для начала нам нужно узнать, какие углы между собой равны, чтобы составить отношение. Итак. Угол ВСА=угол АСD как накрест лежащие, потому что ВС||AD. Значит, у нас есть по одному равному углу, и мы можем составить отношение площадей этих треугольников (площади треугольников, в которых есть по одному равному углу, относятся как произведение сторон, заключающих эти углы):
Есть такое свойство: площади подобных треугольников относятся как квадрат коэффициента подобия. Значит, коэффициент подобия этих треугольников: .
Теперь ищем другие равные углы. Угол ВАС не может быть равен углу АСD, потому что тогда АВ||СD, а такого быть не может, потому что боковые стороны трапеции по определению не параллельны, значит, угол ВАС= угол АDC, а угол АВС= угол ACD. Теперь мы можем составить отношение сторон, не забывая, что у нас есть коэффициент подобия:
ответ: АС=12.
Если не сработал графический редактор, то обновите страницу
ответ: 15π/36 дм²; 15π/9 дм²
Объяснение:
Радиус вписанной окружности в равносторонний треугольник равен:
r=√3/6*a=√5*√3/6=√15/6 дм
Площадь вписанной окружности равна:
S=πr²=π*(√15/6)²=15π/36 дм²
Радиус описанной окружности равен:
R=√3/3*a=√3*√5/3=√15/3дм
Площадь описанной окружности равна:
S=πR²=π*(√15*3)²=15π/9 дм²