1. От точки А строим угол, равный данному (описано в первом
варианте) и на полученной второй его стороне откладываем отрезок
АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на
прямую "а". Для этого:
Из точки В проводим окружность любого радиуса R, чтобы пересекла
прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим
две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.
На пересечении прямых ВМ и "а" ставим точку С.
Соединяем точки А,В и С и получаем прямоугольный треугольник АВС
с прямым углом <C и с заданными гипотенузой и острым углом.
2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.
3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.
Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.
вектор ас имеет проекции
ас х = (4 - 0) = 4; ас у = (3 - 3) = 0
ас (4; 0)
вектор bс имеет проекции
bс х = (4 - 4) = 0; bс у = (3 - 0) = 3
bс (0; 3)
найдём скалярное произведение векторов ас и bс
ас · bс = (4 · 0 + 0 · 3) = 0
следовательно векторы ас и вс перпендикулярны.
угол асв - прямой и опирается на диаметр аb
Найдём диаметр ав
IabI = √(0 + 4)² + (3 + 0)² = 5
Радиус окружности равен половине диаметра R = 2,5.
Центр окружности O расположен посредине между точками а и b
Найдём координаты точки О
xО = (0 + 4)/2 = 2; уО = (3 + 0)/2 = 1,5
Запишем уравнение окружности (х - хО)² + (у - уО)² =R²
(х - 2)² + (у - 1,5)² = 2,5²