Відповідь:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
Пояснення:
Смотри картинку
1) средняя линия равна половине параллельной стороны, поэтому соотношение сторон также 2:2:4
45/(2+2+4)=5,625
5,625*2=11,25
5,625*4=22,5
2) АВ²=АС²+ВС²=5²+(5√3)²=100
AB=10 см
sinB=AC/AB=0.5
угол В=30°
3)Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка OD.
Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится ик другим отрезкам, не только к сторонам. В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/BD = 2/3. Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.
4)Полученные треугольники AKD и ВКС подобны, поскольку их углы равны друг другу (KAD=КВС, KCB=KDA, BKC=AKD). Это значит, что соотношения их сторон равны. Раз АВ-АК, значит что АК =2*ВK. Отсюда AD = 2*BC. Следовательно BC=AD/2=6 см.
Сумма оснований трапеции = 12+6=18 CM
12×5.2=62.4м=6240см 25×10=250см 6240:250=24.96штук