Сечение через вершину пирамиды и высоту основания. В сечении треугольник, одна сторона - боковое ребро, другая - высота боковой грани (апофема), "нижняя" - высота основания. Высота ПИРАМИДЫ является высотой этого треугольника, её основание делит "нижнюю" сторону на части в отношении 1/2, считая от апофемы. Угол между апофемой и "нижней" стороной задан - это 45 градусов (плоскость сечения очевидно перпендикулярна боковой стороне, поскольку есть 2 прямые в этой плоскости, перпендикулярные ей... на самом деле даже 3 навскидку - высота пирамиды, высота основания и апофема, но достаточно 2:)). Итак. Перпендикуляр из основания высоты треугольника на боковую сторону равен корень(6). Поэтому расстояние от основания высоты до вершины равно корень(6)*корень(2) = 2*корень(3). А вся "нижняя" боковая сторона в 3 раза больше. Нас интересует так же апофема, она равна 2*корень(3)/(корень(2)/2) = 2*корень(6), это можно было увидеть и без вычислений - прямоугольные треугольники с углом 45 градусов - равнобедренные :)) и гипотенуза всегда равна удвоенной медиане; Осталось вычислить сторону основания. В равносторонем треугольнике высота 6*корень(3), значит сторона 12 (поделили на синус 60 градусов).Sбок = 3*12*(2*корень(6))/2 = 36*корень(6);
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.