Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -
Объяснение:
Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета (b) к гипотенузе (с) (рис.1)Значит Прилежащий катет b равен 4.
Гипотенуза c равна 5.
a) вычислите tg a
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.По теореме Пифагора найдём противолежащий катет а:
Тогда тангенс α:
b) используя значение тангенса, постройте угол а
Строим прямоугольный треугольник с противолежащим углу А катетом 3
и прилежащим 4 (рис.2)