АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
В кубе ABCDA₁B₁C₁D₁ диагонали грани A₁B₁C₁D₁ пересекаются в точке O. Назовите линейный угол двугранного угла DA₁C₁D₁
––––––––––––––––––––––
Определение: Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями.
Линейный угол-это угол образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.
Все грани куба - квадраты. Их диагонали равны, пересекаются под прямым углом и точкой пересечения делятся пополам.
Искомый угол - это угол DOD₁ между плоскостями А₁С₁D₁ и A₁C₁D, где D₁O ⊥ A₁C₁, как половина диагонали грани, а DО ⊥ А₁С₁ как наклонная, чья проекция перпендикулярна прямой ( т. о трех перпендикулярах). Плоскость DD₁O перпендикулярна граням двугранного угла.
В приложении с рисунком найдена и примерная величина этого угла ≈ 54,7°