Объяснение:
1. 2, 3
1) ∠PBK и ∠MBL-смежные.
Нет, они вертикальные
2) ∠PBL и ∠MBK-вертикальнвые.
Да, они верикальные, т.к. продолжение сторон одного угла является стороной другого
3) ∠MBK-острый угол.
Да, ∠PBL=∠MBK=72°
72°<90°
4) ∠MBL-прямой угол.
Нет, ∠PBL и ∠MBL-смежные
∠MBL=180°-72°=108°
108°>90°, угол тупой
2. 52°
MA-биссектриса угла, следовательно, она делит угол на две равные части:
∠KMA=∠AML=104°/2=52°
3. ∠DCE=124°
∠DCE и ∠FCE смежные=>∠DCE=180°-56°=124°
4. DC=7см; CF=14см
FD=DC+CF
FD=DC+CF
DC-x
CF-2x
x+2x=21
3x=21
x=7
DC=7 см
CF=14 см
5. ∠NMK=48°
∠KMN=∠OMN-∠OMK=78-30=48°
Объяснение:
52) ΔTMO=ΔQOM по стороне и двум прилеащим углам:
MO - их общая сторона, ∠TMO=∠QOM, ∠TOM=∠QMO (как сумма равных углов)
Как следствие, ΔTSO=ΔQSM, например, по стороне и двум углам:
QM=TO из равенства треугольников ΔTMO=ΔQOM, ∠QMS=TOS из условия, ∠QSM=TSO как вертикальные
53) Треугольники могут быть не равны - пример на рисунке. Так как заданы только равные углы, то стороны могут оказаться разными.
54) ΔABC=ΔEDC по стороне и двум прилежащим углам:
AC=CE по условию, ∠ACB=∠ECB как вертикальные углы, ∠BAC=∠DEC как смежные к равным углам.
Δ ABD прямоугольный по т Пифагора
AB²=BD²+AD²
15²=BD²+9²
BD²=225-81
BD²=144
BD=12
S=AC*BD /2=18*12/2=108
Объяснение:
ΔABC обозначь основание AC=18,боковая сторона AB=15
проведи высоту BDона в равнобедренном Δ является медианой и разделит основание на 2 равные части АD=18:2=9