Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
А) Высота (биссектриса, медиана) в равностороннем треугольнике, разбивает его на два равных прямоугольных треугольника с гипотенузой 6 см и катетом 3 см. По т. Пифагора h=корень(36-9)=корень(27)
а) Высота (биссектриса, медиана) в равностороннем треугольнике, разбивает его на два равных прямоугольных треугольника х (см) - катет 2х (см) -гипотенуза (против угла 30 град, лежит катет=половине гипотенузы) 4 (см) - второй катет По т. Пифагора х^2+16=4x^2 3x^2=16 x=корень(16/3)=4корень(1/3) 2x=8корень(1/3) (см)- сторона равностороннего треугольника
По теореме косинусов
(2√3)²=6²+х²-2·6·х·cos 30°
12=36+x²-6√3·x=0
x²- 6√3·x+24=0
D=108-96=12
x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника.
Углы параллелограмма 60° и 120°
если х=4√3
то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали)
6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60°
второй угол параллелограмма 120°
см. рисунок 2
ответ 120° и 60°