2) ∠BAK = ∠KAC = ∠OCA = ∠OCK, т.к. ∠A = ∠C, и СО и КА — биссектриссы.
В ΔAKB и ΔСОВ: АВ = ВС (т.к. ΔАВС — равнобедренный) ∠BAK = ∠BCO (т.к. АК и СО — биссектриссы равных углов). ∠B — общий. Таким образом, ΔAKB = ΔСОВ по 2-му признаку равенства треугольников.
Откуда AK = СО, что и требовалось доказать.
1) AQ = QB = BF = FC, т.к. AF и CQ — медианы. В ΔAFB и ΔCQB:
АВ = ВС (т.к. ΔАВС — равнобедренный)
QB = BF
∠В — общий. Таким образом, ΔAFB = ΔCQB по 1-му признаку равенства треугольников.
Откуда AF = CQ.
блин хз как рисунок скинуть, я с ноута зашла
1)Решение: в тр-ке ABC MN- средняя линия (т.к отрезок MN соединяет середины двух сторон-по усл.)
треугольники подобны по общему углу и отношению двух сторон одного треугольника к двум сходственным сторонам другого.
отношения этих сторон будут 1/2 (т.к. средняя линия равна 1/2 от стороны ей параллельной) Значит, коэффициент подобия k= 2, отношение площадей Sabc/Sbmn=2*2 = 4
Следовательно, площадь треугольника SABC= 4*12cм= 48см^2