М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lqoki11
Lqoki11
25.02.2021 17:28 •  Геометрия

2 x y в скобках 3 x - 2 игрек во второй степени плюс 3 икс игрек скобка закрывается x - 3 x во второй степени


2 x y в скобках 3 x - 2 игрек во второй степени плюс 3 икс игрек скобка закрывается x - 3 x во второ

👇
Открыть все ответы
Ответ:
вовчик83
вовчик83
25.02.2021

1. По катету и гипотенузе (PAD=DCB)

2. По двум катетам (MKT=NKT)

3. По катету и гипотенузе, по 2 катетам, острому углу (PSK=RSK)

4. По гипотенузе и острому углу (ERF=ESF)

5. По катету и гипотенузе (Если SPM=TKM) По двум катетам (Если SRM=TRM)

6. По катету и гипотенузе (Если AED=BFD) По двум катетам (Если ACD=BCD)

7. прости, не знаю

8. ...

9. По катету и стороне (не уверена) (ADE=BFM)

10. По двум катетам (ADB=CBD)

Объяснение:

в 3 задании т.к. углы при основании PR равны, то прямоугольник равнобедренный, а значит треугольники прямоугольные, а KS делит основание напополам и их равенство можно доказать по 2 катетам, так как стороны боковые равны будут можно по катету и гипотенузе или же по гипотенузе и острому углу.

в 5 и 6 задании т.к. маленькие треугольники равны, то и углы при основании равны, а значит 2 треугольника в которых маленькие тоже прямоугольные.

4,5(20 оценок)
Ответ:
zska25
zska25
25.02.2021

№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.

Пирамида QABCD, QO -  высота,  АQC- диагональное сечение, АВ=а.

V=S•h:3

S=a²

h=AC√3/2  

AC=a:sin45°=a√2

h=a√6/2

V=a³√6/6

№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.  

      Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.  

По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).

ОН - половина АD, ⇒АD=2OH=18 (см)

Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.  

S=15•18•4:2=540 см².

————————

№3. Условие неполное.  

Объем  V  правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)

Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.  

———————

№4.

Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.  

S(бок)=3•MH•AB:2=3•8/3•8:2=32

————————

№5  

Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.  

————————

№6.

Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.  

———————

Решения задач 4,5,6  даны в приложениях.

Объяснение:

4,5(15 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ