cos∠B = 0
cos∠A = 0,6
cos∠C = 0,8
Объяснение:
Найдем длины сторон треугольника по формуле расстояния между точками:
Проверим по теореме, обратной теореме Пифагора, не является ли этот треугольник прямоугольным:
AC² = AB² + BC²
(5√2)² = (3√2)² + (4√2)²
50 = 18 + 32
50 = 50 - равенство верно, значит треугольник прямоугольный с гипотенузой АС.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Косинус прямого угла равен нулю.
cos∠B = 0
cos∠A = AB / AC = 3√2 / 5√2 = 3/5 = 0,6
cos∠C = BC / AC = 4√2 / 5√2 = 4/5 = 0,8
Рассмотрим треугольник АВС, <C=90º. СD - биссектриса <C, AE - биссектриса <А.
По свойству биссектрис:
<C/2=<АCD, <ВCD=90/2=45º.
<А/2=<ЕАC, <ВАЕ.
<АCD=<АCО.
<ЕАC=<ОАC.
Рассмотрим треугольник АСО, <СОА=115º, <АCО=45º, найдем угол <ОАC.
По свойству углов треугольника:
<СОА+<АCО+<ОАC=180º
<ОАC=180-<СОА+<АCО=180º-115º-45º=20º.
Вернемся к треугольнику АВС, определим <А:
<ОАC=<ЕАC=<А/2
Откуда:
<А=2*<ОАC=2*20=40º.
По свойству углов треугольника:
<А+<В+<С=180º.
<В=180-<А-<С=180º-40º-90º=50º.
ответ: меньший угол треугольника АВС - <А=40º.
Объяснение: