Движением фигуры называют преобразование, которое сохраняет расстояние между ее точками.
Свойства движения:
1. Три точки, лежащие на одной прямой, при движении переходят в три точки, лежащие на одной прямой, и три точки, не лежащие на одной прямой, - в три точки, не лежащие на одной прямой.
2. При движении прямая переходит в прямую.
3. Отрезок движением переводится в отрезок.
4. Движение сохраняет меры углов.
5. Последовательное выполнение двух движений есть движение.
ответ: отрезок при движении переходит в отрезок.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения
получаем
Что эквивалентно
Сложив, получаем
или Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения
получаем
Что эквивалентно
Сложив, получаем
или