Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
второй катет - b
гипотенуза - c
имеем систему уравнений:
{a + b = 23
{(a*b)/2 = 60
{a = 23 - b
{[(23 - b) *b]/2 = 60
{a= 23 - b
{23b - b^2 = 120
{a = 23 - b
{b^2 - 23b + 120 = 0
имеем квадратное уравнение {b^2 - 23b + 120 = 0, находим его корни:
D = 529 - 480 = 49; √D = 7
b1 = (23 + 7)/2 = 15
b2 = (23 - 7)/2 = 8
a1 = 23 - b1 = 23 - 15 = 8 см
a2 = 23 - b2 = 23 - 8 = 15 cм
у нас есть два варианта катетов, но гипотенуза будет для них одна
с = √( a^2 + b^2) = √( 15 ^2 + 8^2) = √(225 + 64) = √289 = 17 cм