М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dalikha06
dalikha06
22.02.2022 00:37 •  Геометрия

Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей=170 найдите:угол 1,2,3,4

👇
Открыть все ответы
Ответ:
николь43
николь43
22.02.2022

Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.


К тригонометрическим функциям относятся:


прямые тригонометрические функции:

синус ( {\displaystyle \sin x} \sin x);

косинус ( {\displaystyle \cos x} \cos x);

производные тригонометрические функции:

тангенс ( {\displaystyle \mathrm {tg} \,x} \mathrm{tg}\, x);

котангенс ( {\displaystyle \mathrm {ctg} \,x} \mathrm{ctg}\, x);

другие тригонометрические функции:

секанс ( {\displaystyle \sec x} \sec x);

косеканс ( {\displaystyle \mathrm {cosec} \,x} \mathrm{cosec}\, x).

В английской и американской литературе тангенс, котангенс и косеканс обозначаются {\displaystyle \tan x} {\displaystyle \tan x}, {\displaystyle \cot x} {\displaystyle \cot x}, {\displaystyle \csc x} \csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[1], но потом эти страны перешли на англо-американский стандарт.


Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т. д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.


Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и бесконечно дифференцируемые в области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках {\displaystyle \pm \pi n+{\frac {\pi }{2}}} \pm \pi n + \frac{\pi}{2}, а котангенс и косеканс — в точках {\displaystyle \pm \pi n} \pm \pi n.

Графики тригонометрических функци

4,4(82 оценок)
Ответ:
Вика2006a
Вика2006a
22.02.2022

Сторона трапеции, перпендикулярная основаниям и играющая роль высоты равна двум радиусам т.е.12. Пусть малое основпние равно х. Тогда сумма оснований 24+х. Эта же величина равна сумме боковых сторон, т.к. трапеция описана. Поэтому большая боковая сторона равна 24+х-12=12+х.

Теперь из вершины тупого угла С опустим СМ высоту на большое основанип АД, СД большая боковая сторона, МД=24-х.. Из прямоугольного треугольника СДМ имеем уравнение

144+(24-х)^2=(12+х)^2

144+576-48х+х^2=144+24х+х^2

72х=576

х=8 длина верхнего основания.

Площадь равна


(24+8):2*12=32*6=192.

4,6(92 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ