М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Siemens1
Siemens1
30.12.2020 06:01 •  Геометрия

Дано: правильный шестиугольник,r4=4√2
найти:а6,P6,r6,S6

👇
Открыть все ответы
Ответ:
Batanik17
Batanik17
30.12.2020
Подробно.

а) По определению проекция фигуры на плоскость - совокупность проекций всех точек этой фигуры на плоскость проекции.

Точка К проецируется в основание перпендикуляра КА, т.е. в т. А.

Т. В и С ∆ КВС лежат в плоскости ромба.  Через две точки можно провести только одну прямую. ⇒ 

Все точки сторон ∆ КВС проецируются на стороны ∆ АВС. ⇒ 

∆ АВС проекция ∆ КВС на плоскость ромба АВCД.

б) КА перпендикулярен плоскости ромба, следовательно, перпендикулярен любой прямой, проходящей в этой плоскости через т. А. ⇒КА⊥АС

Диагонали ромба взаимно перпендикулярны.⇒АС⊥ВД

АО - высота равнобедренного ∆ АВД.  Из ∆ АОВ по т.Пифагора АО=√(B²-BO²)=√(25-9)=4

 Расстояние от точки до прямой равно длине проведенного между ними перпендикуляра. 

КО по т. о 3-х перпендикулярах перпендикулярен ВД. 

Из прямоугольного  ∆ КАО расстояние КО=√(КА²+АО*)=√(9+16)=5 см


Можно с рисунком отрезок ка длиной 3 см-перпендикуляр к плоскости ромба авсд,в котором ав=5 см,вд=6с
4,6(71 оценок)
Ответ:
rootme
rootme
30.12.2020

Решение

Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём  DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F  AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg  DFD1 =  = 1 . Поэтому  DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ  AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи  MQP = 60o . Значит,

MQ =  =  = .

Следовательно,

SAMNB = AB· MQ = 2·  = .

Объяснение:

4,6(27 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ